TOPICS BONOBO Chimpanzee "Ai" Crania photos Itani Jun'ichiro archives Open datasets for behavioral analysis Guidelines for Care and Use of Nonhuman Primates(pdf) Study material catalogue/database Guideline for field research of non-human primates 2019(pdf) Primate Genome DB
Primate Research Institute, Kyoto University Copyright (c) |
Japanese Co-opted megasatellite DNA drives evolution of secondary night vision in Azara's owl monkey
Koga A, Tanabe H, Hirai Y, Imai H, Imamura M, Oishi T, Stanyon R, Hirai H
Abstract
Owl monkeys (genus Aotus) are the only taxon in simian primates that consists of nocturnal or otherwise cathemeral species. Their night vision is superior to that of other monkeys, apes and humans but not as good as that of typical nocturnal mammals. This incomplete night vision has been used to conclude that these monkeys only secondarily adapted to a nocturnal lifestyle, or to their cathemeral lifestyle that involves high night-time activity. It is known that the rod cells of many nocturnal mammals possess a unique nuclear architecture in which heterochromatin is centrally located. This "inverted nuclear architecture", in contrast with "conventional nuclear architecture", provides elevated night vision by passing light efficiently to the outer segments of photoreceptors. Owl monkey rod cells exhibit an intermediate chromatin distribution, which may provide them with less efficient night vision than other nocturnal mammals. Recently, we identified three megasatellite DNAs in the genome of Azara's owl monkey (A. azarae). In the present study, we show that one of the three megasatellite DNAs, OwlRep, serves as the primary component of the heterochromatin block located in the central space of the rod nucleus in A. azarae. This satellite DNA is likely to have emerged in the Aotus lineage after its divergence from those of other platyrrhini taxa and underwent a rapid expansion in the genome. Our results indicate that the heterochromatin core in the A. azarae rod nucleus was newly formed in A. azarae or its recent ancestor, and supports the hypothesis that A. azarae, and with all probability other Aotus species, secondarily acquired night vision. Bibliographic information
Genome Biology and Evolution Vol. 9 doi: 10.1093/gbe/evx142 https://academic.oup.com/gbe/article/4048064/ 2017/08/03 Primate Research Institute
|