JAPANESE TOP Message from the Director Information Faculty list Research Cooperative Research Projects Entrance Exam Publication Job Vacancy INTERNSHIP PROGRAM Links Access HANDBOOK FOR INTERNATIONAL RESEARCHERS Map of Inuyama
TOPICS
BONOBO Chimpanzee "Ai" Crania photos Itani Jun'ichiro archives Open datasets for behavioral analysis Guidelines for Care and Use of Nonhuman Primates(pdf) Study material catalogue/database Guideline for field research of non-human primates 2019(pdf) Primate Genome DB

Primate Research Institute, Kyoto University
Inuyama, Aichi 484-8506, JAPAN
TEL. +81-568-63-0567
(Administrative Office)
FAX. +81-568-63-0085

Copyright (c)
Primate Research Institute,
Kyoto University All rights reserved.


Contact

Japanese

Differential Prefrontal White Matter Development in Chimpanzees and Humans

Tomoko Sakai, Akichika Mikami, Masaki Tomonaga, Mie Matsui, Juri Suzuki, Yuzuru Hamada, Masayuki Tanaka, Takako Miyabe-Nishiwaki, Haruyuki Makishima, Masato Nakatsukasa, Tetsuro Matsuzawa

A comparison of developmental patterns of white matter (WM) within the prefrontal region between humans and nonhuman primates is key to understanding human brain evolution. WM mediates complex cognitive processes and has reciprocal connections with posterior processing regions . Although the developmental pattern of prefrontal WM in macaques differs markedly from that in humans, this has not been explored in our closest evolutionary relative, the chimpanzee. The present longitudinal study of magnetic resonance imaging scans demonstrated that the prefrontal WM volume in chimpanzees was immature and had not reached the adult value during prepuberty, as observed in humans but not in macaques. However, the rate of prefrontal WM volume increase during infancy was slower in chimpanzees than in humans. These results suggest that a less mature and more protracted elaboration of neuronal connections in the prefrontal portion of the developing brain existed in the last common ancestor of chimpanzees and humans, and that this served to enhance the impact of postnatal experiences on neuronal connectivity. Furthermore, the rapid development of the human prefrontal WM during infancy may help the development of complex social interactions, as well as the acquisition of experience-dependent knowledge and skills to shape neuronal connectivity.

Current Biology, 11 August 2011

http://www.cell.com/current-biology/abstract/S0960-9822(11)00788-3

AUG/12/2011

Copyright(C) 2010 PRI (). All rights reserved.