JAPANESE TOP Message from the Director Information Faculty list Research Cooperative Research Projects Entrance Exam Publication Job Vacancy INTERNSHIP PROGRAM Links Access HANDBOOK FOR INTERNATIONAL RESEARCHERS Map of Inuyama
TOPICS
BONOBO Chimpanzee "Ai" Crania photos Itani Jun'ichiro archives Open datasets for behavioral analysis Guidelines for Care and Use of Nonhuman Primates(pdf) Study material catalogue/database Guideline for field research of non-human primates 2019(pdf) Primate Genome DB

Primate Research Institute, Kyoto University
Inuyama, Aichi 484-8506, JAPAN
TEL. +81-568-63-0567
(Administrative Office)
FAX. +81-568-63-0085

Copyright (c)
Primate Research Institute,
Kyoto University All rights reserved.


Contact

Japanese

The genome of the blood fluke Schistosoma mansoni

Matthew Berriman, Brian J. Haas, Philip T. LoVerde, R. Alan Wilson, Gary P. Dillon, Gustavo C. Cerqueira, Susan T. Mashiyama, Bissan Al-Lazikani, Luiza F. Andrade, Peter D. Ashton, Martin A. Aslett, Daniella C. Bartholomeu, Gaelle Blandin, Conor R. Caffrey, Avril Coghlan, Richard Coulson, Tim A. Day, Art Delcher, Ricardo DeMarco, Appolinaire Djikeng, Tina Eyre, John A. Gamble, Elodie Ghedin, Yong Gu, Christiane Hertz-Fowler, Hirohisa Hirai, Yuriko Hirai, Robin Houston, Alasdair Ivens, David A. Johnston, Daniela Lacerda, Camila D. Macedo, Paul McVeigh, Zemin Ning, Guilherme Oliveira, John P. Overington, Julian Parkhill, Mihaela Pertea, Raymond J. Pierce, Anna V. Protasio, Michael A. Quail, Marie-Ade`le Rajandream, Jane Rogers, Mohammed Sajid, Steven L. Salzberg, Mario Stanke, Adrian R. Tivey, Owen White, David L. Williams, Jennifer Wortman, Wenjie Wu, Mostafa Zamanian, Adhemar Zerlotini, Claire M. Fraser-Liggett, Barclay G. Barrell & Najib M. El-Sayed

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.

Nature 460: 352-358, 16 July, 2009

JUL/17/2009

Copyright(C) 2009 PRI (). All rights reserved.